Anneaux et polynômes - TD 1

- 1. Soit $f: R \to S$ un homomorphisme d'anneaux. Montrer que $\operatorname{Im} f$ est un sous-anneau de S.
- **2.** Soit $f: R \to S$ un homomorphisme d'anneaux. Montrer que Kerf est un idéal de R.
- **3.** Soit $f: R \to S$ un homomorphisme d'anneaux et soit J un idéal de S. Montrer que $f^{-1}(J)$ est un idéal de R.
- **4.** Soit R un anneau avec $0_R \neq 1_R$. L'anneau R est un corps si et seulement si R a exactement deux idéaux: $\{0_R\}$ et R.
- **5.** Soit $f: R \to S$ un homomorphisme d'anneaux. Si R est un corps, alors f est injectif.
- **6.** Soit $f: R \to S$ un homomorphisme d'anneaux. Si S est un anneau intègre, alors $\operatorname{Ker} f$ est un idéal premier de R.
- 7. Montrer que $\mathbb{Q}[x]/(x-1) \cong \mathbb{Q}$; $\mathbb{Q}[x]/(x^2-1) \cong \mathbb{Q}^2$; $\mathbb{Q}[x]/(x^2+1) \cong \mathbb{Q}[i]$. Déterminer si les idéaux (x-1), (x^2-1) et (x^2+1) sont premiers et/ou maximaux dans $\mathbb{Q}[x]$.
- 8. Montrer que R est un anneau intègre si et seulement si R[x] est un anneau intègre. Montrer que R[x] n'est jamais un corps, et déterminer ses éléments inversibles.
- **9.** Soit k un corps et soit $f(x) \in k[x]$ avec $f(x) \notin k$. L'idéal (f(x)) est maximal si et seulement si (f(x)) est premier, qui est vrai si et seulement si f(x) est irréductible dans k[x].
- 10. Soit k un corps et soit $f(x) \in k[x]$. Montrer que si $\deg f(x) \in \{2,3\}$ et f(x) n'a pas de racines dans k, alors f(x) est irréductible dans k[x].
- 11. Soit $f(x) \in \mathbb{R}[x]$. Le polynôme f(x) est irréductible dans $\mathbb{R}[x]$ si et seulement si deg f(x) = 1 ou deg f(x) = 2 et f(x) n'a pas de racines réelles.
- **12.** Soit $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$ avec $a_n \neq 0$. S'il existe un nombre premier p tel que
 - (i) p divise $a_0, a_1, \ldots, a_{n-1},$
 - (ii) p ne divise pas a_n , et
 - (iii) p^2 ne divise pas a_0 ,

alors f(x) est irréductible dans $\mathbb{Q}[x]$ ("critère de Eisenstein").

13. Si R est un anneau avec car R = p où p est un nombre premier, alors

$$(a+b)^p = a^p + b^p$$
 et $(a-b)^p = a^p - b^p$

pour tous $a, b \in R$.

14. Si R est un anneau intègre avec $\operatorname{car} R = p$ où p est un nombre premier, alors l'application (de Frobenius) $F: R \to R$, $a \mapsto a^p$ est un monomorphisme.